Harnack Inequalities for Non-local Operators of Variable Order

نویسندگان

  • RICHARD F. BASS
  • MORITZ KASSMANN
چکیده

We consider harmonic functions with respect to the operator Lu(x) = ∫ [u(x+ h)− u(x)− 1(|h|≤1)h · ∇u(x)]n(x, h) dh. Under suitable conditions on n(x, h) we establish a Harnack inequality for functions that are nonnegative and harmonic in a domain. The operator L is allowed to be anisotropic and of variable order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnack Inequalities and ABP Estimates for Nonlinear Second-Order Elliptic Equations in Unbounded Domains

In this paper we are concerned with fully nonlinear uniformy elliptic operators with a superlinear gradient term. We look for local estimates, such as weak Harnack inequality and local Maximum Principle, and their extension up to the boundary. As applications, we deduce ABP type estimates and weak Maximum Principles in general unbounded domains, a strong Maximum principle and a Liouville type t...

متن کامل

Harnack type inequality for positive solution of some integral equation

In this paper, we establish some Harnack type inequalities satisfied by positive solutions of nonlocal inhomogeneous equations arising in the description of various phenomena ranging from population dynamics to micro-magnetism. For regular domains, we also derive an inequality up to the boundary. The main difficulty in such context lies in a precise control of the solutions outside a compact se...

متن کامل

Uniformly Elliptic Operators on Riemannian Manifolds

Given a Riemannian manifold (M, g), we study the solutions of heat equations associated with second order differential operators in divergence form that are uniformly elliptic with respect to g . Typical examples of such operators are the Laplace operators of Riemannian structures which are quasi-isometric to g . We first prove some Poincare and Sobolev inequalities on geodesic balls. Then we u...

متن کامل

Global Positivity Estimates and Harnack Inequalities for the Fast Diffusion Equation

We investigate local and global properties of positive solutions to the fast diffusion equation ut = ∆u m in the range (d− 2)+/d < m < 1, corresponding to general nonnegative initial data. For the Cauchy problem posed in the whole Euclidean space R we prove sharp Local Positivity Estimates (Weak Harnack Inequalities) and Elliptic Harnack inequalities; we use them to derive sharp Global Positivi...

متن کامل

Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators

We announce some results obtained in a recent study [14], concerning a general class of hypoelliptic evolution operators in R. A Gaussian lower bound for the fundamental solution and a global Harnack inequality are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004